Network processes involved in the mediation of short-term habituation in Aplysia: contribution of intrinsic regulation of excitability and synaptic augmentation
نویسندگان
چکیده
Short-term habituation (STH) is the decrease in behavioral responding observed during repeated stimulation at regular intervals. For siphon-elicited siphon withdrawal in Aplysia (S-SWR), we previously showed that the amplitude of responses measured in LFS-type siphon motor neurons (LFS MNs) during training is dependent on the stimulus interval used and is training-site specific. The major source of excitation from siphon stimulation onto the LFS MNs comes from the L29 interneurons. Here we examined the role of the L29s in STH by addressing two questions: (1) What are the relative contributions of intrinsic regulation of excitability and network inhibition on L29 activity during STH training? By activating L29s with intracellular current injection, we found that intrinsic changes in excitability occur, but only at short training intervals (1 s). We also demonstrated that network inhibition is not required for regulating L29 responses during training, indicating that any expression of inhibition is redundant to the excitability changes. (2) How does L29 synaptic plasticity contribute to the maintenance of training site-specificity exhibited in LFS MNs? When training stimuli are delivered 1 s apart [1 s, interstimulus interval (ISI)], L29 responses decrease in both stimulated (trained) and un-stimulated (untrained) pathways, yet site-specificity of training is maintained in the LFS MNs. Our results suggest that activity-dependent synaptic facilitation (augmentation; AUG) expressed by the L29s acts to compensate for the decreased activity in the untrained pathway. First, we demonstrated that the L29-LFS synapse exhibits significant AUG with L29 activation at a 1 s ISI. Second, we showed that the induction of AUG prevents the reduction in siphon-evoked LFS responses that is otherwise observed with decreased L29 activity. Collectively, our results support a role for the L29s in regulating network dynamics during STH training, but only at rapid (1 s ISI) training intervals.
منابع مشابه
Augmentation of paired pulse index as short-term plasticity due to morphine dependence
Abstract* Introduction: Chronic morphine exposure can cause addiction and affect synaptic plasticity, but the underlying neural mechanisms of this phenomenon remain unknown. Herein we used electrophysiologic approaches in hippocampal CA1 area to examine the effect of chronic morphine administration on short-term plasticity. Methods: Experiments were carried out on hippocampal slices taken f...
متن کاملAcquisition and retention of long-term habituation in Aplysia: correlation of behavioral and cellular processes.
To examine the cellular mechanisms responsible for transition from a short-term to a long-term behavioral modification, a rapid training procedure was developed for producing long-term habituation of the defensive withdrawal of gill and siphon in Aplysia. Four ten-trial training sessions, with 1(1/2)-hour intersession intervals, produced habituation that was retained for more than 1 week. This ...
متن کاملSynaptic augmentation contributes to environment-driven regulation of the aplysia siphon-withdrawal reflex.
This research shows that short-term synaptic plasticity can play a critical role in shaping the behavioral response to environmental change. In Aplysia, exposure to turbulent environments produces a stable reduction in the duration of the siphon-withdrawal reflex (SWR) and the responsiveness of siphon motor neurons. Recovery takes >1 min after a brief (10 sec-5 min) exposure but <1 min after a ...
متن کاملA quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia.
Habituation, one of the simplest behavioral paradigms for studying memory, has recently been examined on the cellular level in the gill-withdrawal reflex in the mollusc Aplysia and in the escape response in cray-fish. In both cases short-term habituation involved a decrease in excitatory synaptic transmission at the synapses between the sensory neurons and their central target cells. To analyze...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کامل